2006 Science					
Learning Standards					
District of Columbia Science Grades 9-12 (Physics)					
Activity/Lesson	State	Standards			
			Select and use appropriate tools and technology		
			to perform tests, collect data, analyze		
			relationships, and display data. (The focus is on		
			manual graphing, interpreting graphs, and mastery of metric measurements and units, with		
			supplementary use of computers and electronic		
Session-10 (1-5)	DC	SCI.P.1.10	data gathering when appropriate.)		
36331011-10 (1-3)	ВС	301.1 . 1 . 10	Apply mathematical relationships involving linear		
			and quadratic equations, simple trigonometric		
			relationships, exponential growth and decay		
			laws, and logarithmic relationships to scientific		
Session-10 (1-5)	DC	SCI.P.1.13	situations.		
			Explain that when the net force on an object is		
			zero, no acceleration occurs; thus, a moving		
			object continues to move at a constant speed in		
			the same direction, or, if at rest, it remains at		
Session-10 (1-5)	DC	SCI.P.2.1	rest (Newton's first law).		
			Explain that only when a net force is applied to		
			an object will its motion change; that is, it will		
	50	001.000	accelerate according to Newton's second law, F		
Session-10 (1-5)	DC	SCI.P.2.2	= ma.		
			Predict and explain how when one object exerts a force on a second object, the second object		
			always exerts a force of equal magnitude but of		
			opposite direction and force back on the first: F1		
Session-10 (1-5)	DC	SCI.P.2.3	on $2 = -F2$ on 1 (Newton's third law).		
		001.1 .2.0	Explain that Newton's laws of motion are not		
			universally applicable, but they provide very		
			good approximations, unless an object is		
			moving close to the speed of light, has a very		
			large mass, or is small enough that quantum		
Session-10 (1-5)	DC	SCI.P.2.4	effects are important.		
			Explain that every object in the universe exerts		
			an attractive force on every other object. Know		
			the magnitude of the force is proportional to the		
			product of the masses of the two objects and		
	D.O.	001.00.5	inversely proportional to the distance between		
Session-10 (1-5)	DC	SCI.P.2.5	them: F = G m1m2/r².		
			Explain how a force acting on an object perpendicular to the direction of its motion		
Session-10 (1-5)	DC	SCI.P.2.7	causes it to change direction but not speed.		
00331011-10 (1-0)		001.1 .2.1	Apply the law F = ma to solve one-dimensional		
			motion problems involving constant forces		
Session-10 (1-5)	DC	SCI.P.2.10	(Newton's second law).		
	-	2 2	Solve problems in circular motion, using the		
			formula for centripetal acceleration in the		
Session-10 (1-5)	DC	SCI.P.2.12	following form: $a = v^2/r$.		

Session-10 (1-5)	DC	SCI.P.2.13	Create and interpret graphs of speed versus time and the position and speed of an object undergoing constant acceleration.
Seesier 40 (4.5)	DC	CCI D2 4	Recognize that when a net force, F, acts through a distance, delta x, on an object of mass, m, which is initially at rest, work, W = F delta x, is done on the object; the object acquires a velocity, v, and a kinetic energy, K = ½ mv2 = W
Session-10 (1-5)	DC	SCI.P.3.1	= F delta x.
			Calculate the momentum of an object as the
Session-10 (1-5)	DC	SCI.P.3.12	product p = mv.